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4.6 Thermal Str‘

= Achange in temperature can cause a body to change its dimensions.

= if the temperature increases, the body will expand, whereas if the
temperature decreases, it will contract.

= This expansion or contraction is //nearly related to the temperature
Increase or decrease that occurs.

= |f the material is homogeneous and isotropic, it has been found from
experiment that the displacement of a member having a length L can be
calculated using the formula

ESTT' — ¥ Z&:Zjl;

a = liner coefficient of thermal expansion. Unit
measure strain per degree of temperature: 1/°C
(Celsius) or 1/°K (Kelvin)

AT = algebraic change in temperature of member
&= algebraic change in length of member.

L = the original length of the member
1/23/2017
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Most traffic bridges are designed
with expansion joints to
accommodate the thermal
movement of the deck and thus
avoid any thermal stress.

[I_ong extensions of ducts and pipes\
that carry fluids are subjected to
variations in climate that will cause

them to expand and contract.
Expansion joints, such as the one
shown, are used to mitigate thermal

\stress in the material.
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The A-36 steel bar shown in Fig. 4-17a is constrained to just fit
between two fixed supports when T; = 60°F. If the temperature 1s
raised to T, = 120°F, determine the average normal thermal stress
developed 1n the bar.

0.5 1n.
SOLUTION |___|
» Equilibrium ._'
+TEF:_, = () A
fﬁq —_ }?B = F

The problem is statically indeterminate since
this force cannot be determined from
equilibrium.

E T
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Compatibility. Since 84,5 = 0, the thermal displacement 81 at A oF

that occurs, Fig. 4-17c¢, 1s counteracted by the force F that is required I
to push the bar 8 back to its original position. The compatibility
condition at A becomes %

+T Gap=0=08r— 8

Load-Displacement. Applying the thermal and load-displacement
relationships, we have

©
FL
— @ATL — ——
@ AE

Thus, from the data on the inside back cover,

F = aATAE
= [6.60(107°) /°F](120°F — 60°F)(0.5 in.)* [29(10%) kip/in ?]
= 2.871 kip
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Since F also represents the internal axial force within the bar, the
average normal compressive stress is thus

F 2.871 ki
o = = . I;" = 11.5 ksi Ans.
A (0.5 1n.)

NOTE: From the magnitude of F, it should be apparent that changes
in temperature can cause large reaction forces in statically
indeterminate members.
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4.7 Stress COW

)
)
s " Consider the bar in Fig. 4-20 a, which is subjected to an axial force P.
Ee)
<3 " The maximum normal stress in the bar occurs on section a— a, which is
= taken through the bar’s smallest cross-sectional area.
N a
c \ T rvm-:r En]v 2 1 B
= - 11 o ™/
b P T o ‘} B 1—» P
= ; 0 e B W ¥,
3] : T o I 1/
2 213 | 3l BN
(¥ - - a
O Undistorted
<
j=2 R —
qc_) 1’{:— - TOEmEET “—)r'\
SR T ale %
% P‘_L .“f:i;t 6:7.".:410\“ “","‘_.'P
3 R RS e .-".." -+
Distorted
(a)
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the stress distribution acting on this section can be determined either from a
mathematical analysis, using the theory of elasticity, or experimentally by

measuring the strain normal to section a— aand then calculating the stress using
Hooke’s law, 0 = EEe.

Regardless of the method used, the general shape of the stress distribution will
be like that shown in Fig. 4-20 0.

P*-l—'_

Actual stress distribution

(b)
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= |n similar manner, if the bar has a reduction in its cross section, achieved

m - - - -
2 using shoulder fillets as in Fig. 4-21 a,
&) » then again the maximum normal stress in the bar will occur at the srmallest
= cross-sectional area, section a— 4, and the stress distribution will look
Q like that shown in Fig. 4-21 0.
(D)
¥
g - ,
@ pe—" o e “>p
o i ’ ; 1”]/\
i
S
a T max
2 Undistorted
(¥ -
O
== P~ \
CCS) P <— S —> P Actual stress distribution
<5} T . Y (b)
= e
o)) Distorted

(a)
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= |In both of these cases, force equilibrium requires the magnitude of the
resultant force developed by the stress distribution to be equal to ~.

P/AWI

= This integral graphically represents the total vo/ume under each of the
stress-distribution diagrams shown in Fig. 4-20 bor Fig. 4-21 b.

= The resultant P must act through the centroid of each volume .
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In engineering practice, actual stress distribution not needed, only maximum
stress at these sections must be known. Member is designed to resist this
stress when axial load P is applied.

Kis defined as a ratio of the maximum stress to the average stress acting at
the smallest cross section:

K = (4-6)

Kis independent of the bar’s geometry and the type of discontinuity, only
on the bar’s geometry and the type of discontinuity.
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= As size rof the discontinuity is decreased, stress concentration is
Increased.

= [t is important to use stress-concentration factors in design when using
brittle materials, but not necessary for ductile materials

= Stress concentrations also cause failure structural members or mechanical
elements subjected to fatigue loadings

Wl
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Strength of Materials: Second Class

1/23/2017

This saw blade has grooves cut into it in
order to relieve both the dynamic stress
that develops within it as it rotates and
the thermal stress that develops as it
heats up. Note the small circles at the
end of each groove. These serve to
reduce the stress concentrations that
develop at the end of each groove.




Ex1:- Steel bar shown below has allowable stress, o, = 115 MPa.
% Determine largest axial force P that the bar can carry.
O Solution. -
E Because there is a shoulder fillet, stress-concentrating factor P
= determined using the graph below T
&
73l Calculating the necessary geometric parameters yields |
S — 20 mm
E _/’ _ 10mm _ W _ 40 mm _ 10 mm . 10 mm
S 77 20mm -9 Th 20mm % '
= l 10 mm
ISM Thus, from the graph 4-23, K= 1.4 =
< - -40 mm
=
D Average normal stress at smallest x-section,
. _ o y
Oavg = (20 mm)(10 mm) = 0.005 PN/mm p
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Applying Eqge 4-7 with oy ., = Gnax Yi€lds

115 N/mm? = 1.4(0.005AP)

P=16.43(10%) N = 16.43 kN
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Homework

1:- Determine the maximum axial force P that can be applied to
the bar. The bar is made from steel and has an allowable stress

Of Oqllow = 21 kSl
1.875 in. 0.125 in.
l /H/I.ZS in.
Ll

P <— () I_'P
!

ol r=0.25 in.
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Homework

2. Determine the maximum normal stress developed in the bar
when it Is subjected to a tension of P = 2 Kip.

1.875 in. 0.125 in.
l /‘ 1.25 in.
(|-

P <— () I_”,
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